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Abstract

We propose a new approach for estimation of joint densities for continuous observations
using latent tree models for copulas, joint distributions with uniform U (0, 1) marginals.
Latent tree copulas combine the advantages of the parametrization of the joint density
using only bivariate distributions with the ability to approximate complex dependencies
with the help of latent variables. The proposed model can also be used to organize the
variables in a tree hierarchy. We describe algorithms for estimating binary latent tree
copulas from data for both Gaussian and non-Gaussian copulas.

1 Introduction

Many domains generate multivariate real-
valued data (e.g., biology, finance, hydrology).
Among possible approaches, non-parametric
representations of the joint densities suffer from
the curse of dimensionality, limiting their use to
low-dimensional settings. On the other hand,
while there are many parametric forms for one-
dimensional densities, the choices for multivari-
ate densities with desirable properties (compu-
tationally convenient functional forms, easy es-
timation of marginal, conditional, and poste-
rior densities) are limited, with the best known,
understood, and used tool, multivariate nor-
mal distributions, not always applicable for the
domain. The latter issue has been one of
the reasons why probabilistic graphical mod-
els (PGMs) have been slow to extend to non-
Gaussian cases.

Copulas, multivariate distributions with uni-
form U (0, 1) marginals (e.g., Joe, 1997, Nelsen,
2006), provide a convenient framework for mod-
eling of multivariate distributions as this task
can be split into two parts: (1) modeling of the
univariate marginal distributions, and (2) mod-
eling of the copula which would “bind” the uni-
variate marginals together to make up a joint
distribution. This approach provides flexibility
of separate specification of the functional form

for the copula and the marginals. Copulas can
be viewed as a canonical representation for the
dependence between the random variables as
they preserve the conditional independence re-
lations between the variables while fixing their
marginals. This motivates the use of PGMs for
the copulas rather than the joint densities, and
recent efforts have been extending PGM tech-
niques to copulas (e.g., Elidan, 2010a,b, Kirsh-
ner, 2007).

In this paper, we propose latent tree copulas
(LTCs), tree-structured copulas with some of
the variables hidden (not observed), for mod-
eling of multivariate densities. This approach
combines two frameworks, tree-structured cop-
ulas (Kirshner, 2007) and latent tree models
(Zhang, 2004), borrowing strengths from both.
Tree-structured copulas decompose the joint
copula density into a product of bivariate cop-
ula densities (corresponding to the edges in the
acyclic conditional independence graph) allow-
ing to use the existing bivariate copula machin-
ery for construction of high-dimensional copu-
las. The requirement of only bivariate copulas is
important because while the choices for bivari-
ate copulas have been thoroughly investigated,
only relatively few bivariate functional families
have useful multivariate generalizations. How-
ever, the conditional independence assumptions
imposed by the tree-structure are often unreal-



istic. Borrowing an idea from latent tree models
and introducing latent variables allows model-
ing of more complex dependence relations.

This paper contributes a new parsimonious
model for multivariate data and algorithms for
its inference and parameter estimation. We also
propose a learning algorithm (in the vein of
Harmeling and Williams, 2011) to estimate bi-
nary latent tree copulas from data. The learned
structure can be used for hierarchical clustering
of the variables or features.1

First, we place the contributions of this paper
in the context of related work (Section 1.1). We
then introduce copulas, and a particular tree-
structured subclass of them (Section 2). This
provides enough background to introduce the
latent copula trees (Section 3). Estimation of
latent copula trees from data is considered in
Section 4. Empirical illustration of the above
approaches is carried out in Section 5. We con-
clude in Section 6.

1.1 Related Work

So far, the approaches for learning of latent
tree models focus mostly on the discrete ran-
dom variables (Harmeling and Williams, 2011,
Zhang, 2004, Zhang and Kočka, 2004) although
recent work of Choi et al. (2011) considered the
jointly normal case in addition to discrete vari-
ables. Copulas (e.g., Joe, 1997, Nelsen, 2006)
are becoming an important tool for dealing with
non-Gaussian data with applications in many
areas, e.g., finance (Cherubini et al., 2004), Hy-
drology (Genest and Favre, 2007), and they are
attracting the attention of the machine learn-
ing community.2 Several graphical models have
been considered for copulas including trees (Kir-
shner, 2007) which decompose the joint cop-
ula density into a a product of bivariate cop-
ula densities, and several of their generaliza-
tions, among them, vines which incorporate ad-
ditional conditional dependence with nested bi-
variate copulas (Aas et al., 2009, Bedford and

1An implementation of the algorithms described in
the paper is avaiable for download from http://www.
stat.purdue.edu/~skirshne/LTC/.

2NIPS 2011 workshop on Copulas in Machine
Learning, December 2011, http://pluto.huji.ac.il/

~galelidan/CopulaWorkshop/abstracts.html.

Cooke, 2002, Kurowicka and Cooke, 2006), and
copula Bayesian networks (Elidan, 2010a) which
decompose the joint copula density into a prod-
uct of conditional copula densities and can han-
dle missing data using variational approach (El-
idan, 2010b) (although the case of latent vari-
ables was not explored). A related (albeit not
a copula) model is a cumulative distribution
network (Huang and Frey, 2008) which models
the distribution function as a product of dis-
tribution function factors. Its recent extension,
a mixed cumulative distribution network (Silva
et al., 2011) uses implicit hidden variables.

2 Tree-Structured Copulas

Let X = (X1, . . . , Xd) be a vector of random
variables with support Val (X) ⊆ Rd. Let
F (x) = F (X = x) be a cumulative distribu-
tion function (cdf) for X, and assume that F
is absolutely continuous. Denote by f (x) the
probability density function (pdf) for X. Let
Fu (xu) and fu (xu), u = 1, . . . , d, denote the
marginal cdfs and pdfs, respectively, of X.

2.1 Copulas

Copulas provide a convenient framework for
modeling of multivariate distributions by sep-
arating the marginals from the multivariate de-
pendence. Let au = Fu (xu) be the marginal
distribution function for variable Xu, and let
a = (a1, . . . , ad). Denote by I = (0, 1) the unit
interval. A copula associated with F is a distri-
bution function (cdf) C : Id → I satisfying

F (x) = C (F1 (x1) , . . . , Fd (xd)) , x ∈ Rd,

and if F is absolutely continuous on Rd, C (a) =
F
(
F−11 (a1) , . . . , F

−1
d (ad)

)
, and such decompo-

sition of a distribution into its marginals and
its copula is unique (Sklar’s Theorem, Sklar,
1959).3 For the absolutely continuous case,
the probability density function f can be rep-
resented in terms of the marginal densities

3If F is not absolutely continuous, C can be obtained
using the generalized inverse of the marginal cdfs, and
the associated with F copula function is uniquely defined
on the absolutely continuous region of the support forX.

http://www.stat.purdue.edu/~skirshne/LTC/
http://www.stat.purdue.edu/~skirshne/LTC/
http://pluto.huji.ac.il/~galelidan/CopulaWorkshop/abstracts.html
http://pluto.huji.ac.il/~galelidan/CopulaWorkshop/abstracts.html


Figure 1: Left: graphical model for copulas.
Copula variables are A1, . . . , A4 with unknown
dependence; original variables are X1, . . . , X4

(observed). Middle: tree-structured copula
model for A1, . . . , A4. Right: latent tree cop-
ula model for A1, . . . , A4.

f1, . . . , fd and the copula density function c:

f (x) = c (a)
d∏

u=1

fu (xu) , c (a) =
∂dC (a)

∂a1 . . . ∂ad
.

(1)
Thus a multivariate distribution can be con-
structed by choosing univariate marginals
F1, . . . , Fd, and then coupling or “gluing” them
together with a separately chosen multivariate
distribution, copula C. Further, the product
decomposition in (1) suggests a convenient pa-
rameter estimation approach for a multivariate
distribution by first estimating the marginals,
transforming individual components indepen-
dently according to the estimated marginals,
and then estimating the parameters of the cop-
ula based on the transformed values. For a
graphical model of a copula see Figure 1 (left).

For in-depth treatment of copulas, please see
e.g., Joe (1997), Nelsen (2006). However, we
will introduce the Gaussian copula family as
it has a number of useful properties discussed
in this paper. Suppose (X1, X2)

T is a vec-
tor of two jointly Gaussian random variables
(r.v.s) with mean (µ1, µ2)

T and covariance ma-

trix
( σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
. The copula associated with

the distribution over (X1, X2) is

C (a1, a2) = Φρ

(
Φ−1

(
x1−µ1
σ1

)
,Φ−1

(
x2−µ2
σ2

))

where Φ is the standard normal cdf, and Φρ is
the bivariate normal cdf for the pair of standard
normal r.v.s with correlation ρ ∈ [−1, 1]. Gaus-
sian copula easily generalizes to d > 2 by re-
placing ρ with a correlation matrix R. Gaussian
copula family (bivariate or multivariate) is per-
haps the most commonly employed as it shares
many properties with Gaussian distributions.

2.2 Copulas with a Markov Tree Model

In this paper, we are focusing on the tree-
structured PGMs. Suppose a graph G = (V, E)
is an undirected tree with the set of nodes
V = {1, . . . , d}, and assumes that G contains no
cycles. AssumingX1, . . . , Xd satisfy the Markov
assumptions encoded by G, the joint pdf f can
be written as

f (x) =

[
d∏

u=1

fu (xu)

] ∏
{u,v}∈E

fuv (xu, xv)

fu (xu) fv (xv)


(2)

where fuv (xu, xv) denotes the bivariate
marginal density for (Xu, Xv). The same
product decomposition holds for the case of
discrete random variables X with probability
mass functions (pmfs) replacing pdfs.

Kirshner (2007) proposed using tree-
structured copulas and their variants for
multidimensional density estimation (Figure 1,
middle). By combining (2) and (1), the copula
density for a tree-structured distribution can
be expressed as a product of bivariate copulas
on the edges:

cT (a) =
∏

{u,v}∈E

cuv (au, av) . (3)

The converse also holds; if a pdf cT (a) is con-
structed as a product of bivariate copulas as in
(3), then it is a valid copula density. This prop-
erty permits building high-dimensional tree-
structured copulas by separately specifying the
Markov tree-structure and a bivariate copula
(or its densities) for each edge.

3 Latent Tree Copulas

Copula decomposition suggests that the inte-
gral part of modeling the multivariate densities



is modeling their copulas. While computation-
ally convenient, it is unreasonable to expect the
multivariate dependence to be tree-structured.
Mixtures or ensembles of trees can model more
complex dependencies (Kirshner, 2007, Meilă
and Jordan, 2000), but they may lack inter-
pretability. Our approach extends the latent
tree model of Zhang (2004) to copulas and thus
to real-valued data by introducing latent vari-
ables (LVs) for copula models while preserving
the appealing properties of trees.

Definition 1. Let A = (A1, . . . , Ad)
T be a

vector of U (0, 1) random variables. A is tree-
decomposable if there exists a tree (forest) G =
(V, E), V = {1, . . . , t}, t ≥ d, and bivariate cop-
ula densities cuv (au, av), {u, v} ∈ E such that

cLT (a) =

∫∫
It−d

∏
{u,v}∈E

cuv (au, av) dad+1 . . . dat.

(4)
We call the copula CLT in (4) a latent tree copula
(LTC).

LTCs generalize the tree-structured copu-
las by introducing LVs Ad+1, . . . , At. Unlike
the categorical variable setting where the sup-
port for each variable is finite, and there-
fore, bivariate marginals can be naturally repre-
sented with a multinomial distribution, model-
ing of cuv (au, av) requires additional assump-
tions. We assume the density for each cuv
is parametric with a pair (Muv, θuv) denoting
the functional form and a vector of parame-
ters, respectively. To define a LTC model for
(A1, . . . , Ad), one needs to specify a 4-tuple
(t, E ,N ,θ): t, the total number of variables, E ,
the set of t− 1 index pairs,M = (Muv){u,v}∈E ,
the set of t − 1 copula functional forms, and
θ = (θuv){u,v}∈E , the set of t − 1 vectors of pa-
rameters for the bivariate copulas.

Using LVs within the trees permits approxi-
mating densities, possibly with complex depen-
dencies, using only bivariate copulas. As is the
case with tree copulas, this opens up a signif-
icant body of existing work on bivariate copu-
las for construction of multivariate densities, in
contrast to copula Bayesian networks (Elidan,
2010a) which require higher-dimensional copu-

las as building blocks. On the other hand, in
contrast to mixtures or ensembles of trees, the
latent tree copulas provide a clear interpreta-
tion of the dependence between the variables in
the model.

LTCs have a somewhat different representa-
tional power than their categorical-valued “sib-
lings”, LTMs (Zhang, 2004). LTMs are distribu-
tions over a finite set of variable states and are
not identifiable as many different LTMs can rep-
resent the same distribution over the observed
variables (OVs) (X1, . . . , Xd), (property known
as a marginal equivalence of the models). In or-
der to evaluate LTMs, it is therefore necessary
to consider the parsimony of the model, with
preference given to models with fewer free pa-
rameters. However, among parsimonious fam-
ilies of LTMs, there are only a finite number
of tree-structures possible to represent all pos-
sible distributions over a fixed number of OVs
(Zhang, 2004). LTCs, depending on the func-
tional families for copulas,M, could have a very
large number of parameters and cannot be rep-
resented by a simpler model. For practical pur-
poses, we have to limit the number of latent
variables in the LTC model, and we have to
consider bivariate copula families which use few
parameters.

4 Learning

Since LTC is specified as a 4-tuple, (t, E ,M,θ),
potentially all 4 elements of the 4-tuple need to
be estimated. In the categorical case, the num-
ber of possible minimal models agreeing with
marginals over the OVs is superexponential in
d, but is finite (Zhang, 2004). For the contin-
uous case, however, there is a potentially infi-
nite number of models which can approximate
the data (as for most copula families for the
edges, adding additional edges simply increases
the flexibility of the model).

To make learning tractable, we therefore have
to restrict the class of desired solutions. We
make two assumptions: (1) we assume that each
bivariate copula comes from the same functional
family, Muv = M′ for all {u, v} ∈ E with M′
selected apriori, and (2) we restrict the struc-



tures G to be binary latent trees as in Harmeling
and Williams (2011). Binary latent tree with
d > 1 observed (manifest) variables has d − 1
LVs (t = 2d − 1); each observed variable cor-
responds to a leaf of the tree, and each latent
variable has exactly 3 neighbor except for one
latent variable, the root of the tree, see Figure
1, right (d = 4).

Theorem 1. Any Gaussian LTC can be repre-
sented as a Gaussian binary LTC.4

Thus it is justifiable to consider only binary
LTCs for the Gaussian case even though Gaus-
sian binary LTCs will have redundant latent
nodes, and potentially could have edges join-
ing perfectly dependent variables (i.e., θuv ∈
{−1, 1}). For the non-Gaussian case, binary la-
tent trees may not necessarily represent all pos-
sible tree-decomposable distributions within the
family. Still, the families of binary latent trees
are flexible, and the resulting trees may provide
an intuitive hierarchical interpretation for the
components of A.

4.1 Structure and Parameter
Estimation

For estimation of binary latent trees and their
parameters, we propose a greedy algorithm
Greedy-BLTC, Algorithm 1, which repeatedly
merges latent binary trees over subsets of vari-
ables into larger subtrees by introducing new
latent variables as a root. The algorithm is
an adaptation of (Bin-G) from Harmeling and
Williams (2011) with some modifications to
LTCs. The algorithm starts out with each vari-
able A1, . . . , Ad as the root of its own tree, with
the joint distribution with the working set de-
noting the set of current roots. The variables in
different trees are independent; the joint proba-
bility distribution overA is the product of prob-
ability distributions for each tree. At each step,
the two trees with the highest estimated mutual
information (based on the posterior probabili-
ties for the latent variables) between their roots
variables are merged into a larger tree by creat-
ing a new latent variable as the root of the new

4Proof is omitted due to space limitations and will
appear in the full version.

Algorithm 1 Greedy-BLTC

1: input: a working set V = {1, . . . , d} of indices for
variables A1, . . . , Ad

2: G = (V, E), V = V , E = ∅
3: estimate pairwise MI for each pair of variables
4: for r = d+ 1, . . . , 2d− 1 do
5: /* loop over the index of the new LV (new root) */
6: {u, v} ← pair from V with highest MI for

(Au, Av)
7: remove u and v from V
8: add new root r to V /* variable Ar is latent */
9: add r to V and edges {r, u} and {r, v} to E

10: θ ← EstimateParameters(subtree with root r)
using the EM algorithm (see Section 4.2)

11: estimate pairwise MIs between r and the rest of
working set V

12: end for
13: output: the graph G, with V = {1, . . . , 2d− 1},

parameters Θ = {θuv}{u,v}∈E

tree and joining the new variable to the roots of
the two subtrees. The parameters of the newly
created tree are re-estimated using the EM al-
gorithm (Section 4.2). The process is repeated
until all of the nodes belong to the same tree.

4.2 Parameter Estimation Given
Structure

To estimate the parameters of a subtree from
line 10 of Algorithm 1, we will employ a variant
of the EM algorithm (Dempster et al., 1977).
Suppose there are d observed variables labeled
AO = (A1, . . . , Ad) and t − d latent variables
labeled AH = (Ad+1, . . . , At), M′ is given, and
suppose G = (V, E) is a tree. (The tree does not
have to be binary.) Suppose we are given a set
of i.i.d. observation vectors D =

{
a1O, . . . ,a

N
O

}
,

anO = (an1 , . . . , a
n
d ) with none of anu (u = 1, . . . , d)

missing. Our goal is to find the maximum
likelihood estimate (MLE) of the parameters
θ = {θuv}{u,v}∈E :

θ̂ = argmax
θ

N∑
n=1

ln cLT (anO|θ) . (5)

Each iteration of the standard EM optimizes

N∑
n=1

EcLT (An
u,A

n
v |an

O,θ
′) ln cuv (anu, a

n
v |θuv) (6)

with respect to θuv for each {u, v} ∈ E , where
θ′ is the set of parameter values at the start of



the iteration. For theM′ = Gaussian family of
copulas, the update can be computed in closed
form by finding a root θuv ∈ [−1, 1] of the equa-
tion

α3θ
3
uv + α2θ

2
uv + α1θuv + α0 = 0

where

α3 = N,

α2 = α0 = −
N∑
n=1

ENT (Zn
u ,Z

n
v |zn,θ′)z

n
uz

n
v ,

α1 =
N∑
n=1

ENT (Zn
u ,Z

n
v |zn,θ′)

[
(znu)2 + (znv )2 − 1

]
.

NT
(
Zn|θ′

)
is a tree-structured t-variate Gaus-

sian distribution obtained from CLTN
(
An|θ′

)
via independent transformation of the
marginals Znu = Φ−1 (Anu). The expecta-
tions above can be efficiently computed using
the Belief Propagation algorithm of Pearl
(1988) applied to a multivariate normal NT ,
O (Nt) computational complexity.

4.2.1 Non-Gaussian Case

For cases other than M′ = Gaussian,
the posterior copula density cLT

(
Znu , Z

n
v |zn,θ′

)
may not be computable in closed form, and
for these families a direct application of EM is
therefore impossible. Instead, we propose using
a variational approach. For any density qn (An

H)
over It−d,

ln cLT
(
anO|θ′

)
=

∫
It−d

qn (anH) ln
cLT

(
anO,a

n
H |θ

′)
qn
(
anH
) danH

+D
(
qn (anH) ‖ cLT

(
anH |anO,θ′

))
.

(7)

For variational EM (e.g., Wainwright and
Jordan, 2008), the family Q of distribu-
tions qn ∈ Q is chosen in a way so that
D
(
qn ‖ cLT

(
·|anO,θ

′)) can be easily minimized.
Notice that unlike the standard setting for vari-
ational inference on graphical models, the ap-
proximation is not needed to simplify the de-
pendence structure of latent variables condi-
tioned on the observations; the dependence
structure imposed on cLT (anH |anO) by E is al-
ready a tree or a forest. Instead for LTCs,

the approximating family Q needs to be cho-
sen so that inference with it does not require
closed form marginalization of copula functions
or their products. The modified EM algorithm
iterates between choosing qn (anH) minimizing
D
(
qn ‖ cLT

(
·|anO,θ

′)), n = 1, . . . , N , (E-step)
and updating parameters θ = {θij}{i,j}∈E (M-

step):

θ̂uv = argmax
θuv

N∑
n=1

Eqnuv(An
H) ln cuv (anu, a

n
v |θuv)

(8)
Let EH = {{u, v} ∈ E : u, v ∈ H} be the sub-

set of edges joining only the latent variables,
and let EH+ = {{u, v} ∈ E : u ∈ H, v ∈ O} be
the subset of edges joining one latent and one
observed variable. We consider a family of tree
structured distributions Q with Markov graph
GH = (H, EH) so that ∀q ∈ Q

q (aH) =
∏
u∈H

qu (au)

 ∏
{u,v}∈EH

quv (au, av)

qu (au) qv (av)


where quv, qu, and qv are marginals of q for
the variables (Au, Av), Au, and Av, respectively.
We represent a pdf quv (au, av) on I2 as a 2-d
step function partitioning I2 into K2 1

K ×
1
K

squares (for some preselected integer K), with
each square having uniform density puv (i, j):

quv (au, av) = puv (i, j) ≥ 0 for au ∈ Ii, av ∈ Ij ,
qu (au) = pu (i) ≥ 0 for au ∈ Ii,

where Ii =

(
i− 1

K
,
i

K

]
, and

∑K

i=1
pu (i) = K, u ∈ H, i = 1, . . . ,K,∑K

i=1
puv (i, j) = Kpv (j) , and∑K

j=1
puv (i, j) = Kpu (i) , ∀ {u, v} ∈ EH

(9)

with (9) ensuring q has proper marginals,
and that the bivariate densities agree on the
marginals.

Minimizing D (qn ‖ cLT (·|anO)) is equivalent

to maximizing
∫
It−d q

n (anH) ln
cLT (an

O,a
n
H |θ
′)

qn(an
H)

danH



(Eqn 7), and is equivalent to minimizing

f (qn) =
1

K

∑
u∈H

K∑
i=1

pnu (i) ln pnu (i)

+
1

K2

∑
{u,v}∈EH

K∑
i=1

K∑
j=1

pnuv (i, j) ln
pnuv (i, j)

pnu (i) pnv (j)

−
∑

{u,v}∈E+H

K∑
i=1

wnu (i) pnu (i)

−
∑

{u,v}∈EH

K∑
i=1

K∑
j=1

wnuv (i, j) pnuv (i, j) , where

wnu (i) =

∫
Ii

ln cuv (anu, a
n
v ) danu,

wnuv (i, j) =

∫
Ii

∫
Ij

ln cuv (anu, a
n
v ) danudanv .

(10)

Whether mean field approximation is used
(i.e., assuming pnuv (i, j) = pnu (i) pnv (j)) or struc-
tured mean field, it is straightforward to de-
rive a set of fixed point equations to minimize
f (qn) subject to the constraints in (9). The in-
tegrals of log-copula densities (10) do not have
analytic expressions for most bivariate copula
families. We employ quadrature methods for
estimation of these integrals as they are low-
dimensional and have bounded range of integra-
tion. While the log-likelihood cannot be eval-
uated directly, it can be lower-bounded (from
Eqn 7), by −

∑N
n=1 f (qn). In our experimenta-

tions, choosing K ≥ 50 led to good fits of qn to
cuv (anH |anO, θ′uv) and thus to a good approxima-
tion of the log-likelihood in the equation above.

The computational complexity for the pro-
posed approach depends on the number of it-
erations until mean field equations converge.
Per update, the complexity is O

(
dK2

)
per data

point. This does not include the complexity of
computing the integrals in (10), Nd univariate
and d− 1 bivariate such integrals for latent bi-
nary trees.

5 Experimental Illustration

For an illustration, we model the S&P 100
monthly stock returns data set described in

Table 1: Comparison of the log-likelihood, BIC,
number of created latent variables, number of
free parameters, and running time for the S&P
100 monthly stock returns data.

ll #latent xval8

LTC-G 25381 84 108.38

CL 23970 0 105.99

NJ 24408 45 108.45

CLRJ 24361 26 108.50

Copula-CL 24787 0 107.96

Copula-NJ 25350 41 110.08

Copula-CLRJ 25284 30 109.68

Choi et al. (2011) with a Gaussian LTC.5 The
data set consists of 216 monthly stock returns of
84 companies in the S&P 100 stock index (and
the index itself) for the years 1990–2007. The
goal is to approximate the high-dimensional
distribution between the returns and to dis-
cover useful hierarchies among the variables in
question. First, we transformed the data into
the copula domain: the marginal densities fu,
u = 1, . . . , 85 were estimated by Gaussian KDEs
with bandwidths determined using the Rule of
Thumb (Silverman, 1986), and the data was
mapped into Id (d = 85) by applying Fu to
each component u of the data vector.6 We
then fit a Gaussian LTC (LTC-G) trained us-
ing Greedy-BLTC (Algorithm 1) to the trans-
formed data using 10 random restarts for pa-
rameter estimation (EM) within each subtree.
The results are listed in Table 1; the likelihoods
and the number of hidden variables are com-
puted for the original (not transformed) data;
xval8 refers to out-of-sample per-example log-
likelihood obtained by 8-fold cross-validation.
CL, NJ, and CLRJ procedures are described
in Choi et al. (2011); the goal of all of these
approaches is to learn a latent tree Gaussian
model. Copula- CL, NJ, and CLRJ differ in

5The data set is available as a part of the software
toolbox for Choi et al. (2011). http://people.csail.
mit.edu/myungjin/latentTree.html

6Non-parametric estimation of marginals distribu-
tions is a common approach in copula modeling (e.g.,
Joe and Xu, 1996).

http://people.csail.mit.edu/myungjin/latentTree.html
http://people.csail.mit.edu/myungjin/latentTree.html


that their marginals are first mapped into a
copula domain, and are then modified by the
inverse normal CDF transform. However, the
marginals in this case are close to normal, and
the improvement of the copula- versions of the
algorithms is not significant. LTC-G appears
to provide a similar fit as suggested by the log-
likelihood.7

The graph displaying the hierarchy of the
variables is omitted due to limited space. How-
ever, similar to the reports in Choi et al. (2011),
our approach generates interpretable substruc-
tures. For example, there is a subtree popu-
lated entirely by the natural gas and oil pro-
duction and exploration companies (Schlum-
berger, Baker Hughes, Halliburton, Occidental
Petroleum, Exxon, Chevron, ConocoPhillips),
and another by the telecommunication compa-
nies (Spring, Verizon, and AT&T).

6 Conclusion

We proposed a new model for multivariate con-
tinuous data based on a latent tree hierar-
chy for the copula of the its joint distribution.
This model can be used both to model high-
dimensional densities without the jointly Gaus-
sian assumption or to group variables into sub-
groups. We described an algorithm for estima-
tion of the model’s binary tree structure to-
gether with its parameters from data. In the
future, we plan to improve the estimation pro-
cedure for the non-Gaussian copula case. We
are planning to use the above model for prob-
lems in hydrology, in particular, as an approach
to regionalization of watersheds.
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