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Abstract

Finite mixtures of tree-structured distribu-
tions have been shown to be efficient and
effective in modeling multivariate distribu-
tions. Using Dirichlet processes, we extend
this approach to allow countably many tree-
structured mixture components. The result-
ing Bayesian framework allows us to deal
with the problem of selecting the number of
mixture components by computing the pos-
terior distribution over the number of com-
ponents and integrating out the components
by Bayesian model averaging. We apply the
proposed framework to identify the number
and the properties of predominant precipita-
tion patterns in historical archives of climate
data.

1. Introduction

Graphical models play a central role in learning of
probability distributions from multivariate categori-
cal data. Tree-structured models hold a special place
among graphical models since fundamental operations
such as learning and inference are much more efficient
for tree-structured models than for graphs with loops.
Learning of both the parameters and the edges for
a tree-structured distribution from a complete mul-
tivariate data set can be done optimally1 in time pro-
portional to the size of the data set and the square
of the dimensionality of the data vectors (Chow &
Liu, 1968). On the other hand, if loops are allowed
in a graph, learning of the optimal structure becomes
NP-hard (Chickering, 1996; Srebro, 2003), and even

1Within the class of tree-structured distributions.
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learning of an approximate structure is computation-
ally challenging as the estimation of the structure and
the parameters cannot be performed simultaneously.
Even for the cases when the tree structures are not
sufficiently expressive to capture the complex interac-
tions between the variables, one can still benefit from
the computational efficiency of trees by approximat-
ing the joint distribution with a mixture of trees (MT)
(Grim, 1984; Meilă & Jordan, 2000). While computa-
tionally not as efficient as individual Chow-Liu trees
(and potentially not even optimal within the relevant
class of models), mixtures can provide useful approx-
imations at a fraction of the computational cost of
learning general Markov or Bayesian networks.

Tree-structured distributions over categorical vari-
ables have another useful property: they can be de-
scribed in a fully Bayesian framework with a conju-
gate prior (Meilă & Jaakkola, 2006). This conjugate
prior defines a distribution over all possible tree struc-
tures and the parameters given tree structures. This is
achieved by providing hyperparameters for each pair
of variables and decomposing the posterior distribu-
tion over the structure and parameters into a prod-
uct of distributions defined only on the edges of the
corresponding tree. What is also remarkable is that
the normalization constant for the prior distribution
can be computed in closed form without prohibitive
computational cost. In contrast, for general Bayesian
and Markov networks no such general prior is known,
and more primitive priors are sometimes used instead
(Cooper & Herskovits, 1992; Lam & Bacchus, 1994).
Mixtures of trees can be presented in a fully Bayesian
framework with flexible priors for trees allowing one
to estimate the uncertainty about the structure and
parameters and possibly even integrating out (albeit
numerically, not analytically) this uncertainty.

In this paper, we propose going a step beyond the
standard mixtures of trees. In learning of finite mix-
tures, the number of mixture components is usually
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set beforehand. While there are many approaches to
selection of the number of components, such as scor-
ing (e.g., BIC, DIC) or cross-validation, when the true
distribution generating data is not itself a finite mix-
ture model, these model selection methods may not
yield a clear choice in terms of the number of compo-
nents. Also, due to the limited amount of available
data, only a small number of components may have
manifested themselves in the data, i.e., the more data
that is available the more components may be appro-
priate to model the observed data. It is possible to
sidestep these issues with the help of a Dirichlet pro-
cess mixture model (DPMM). The DPMM is a general-
ization of a finite mixture model allowing (in the limit)
countably many mixture components by replacing a
multinomial distribution over the mixture components
with a Dirichlet process. DPMMs allow the number of
mixture components to grow with the amount of data
available, something not easily doable with finite mix-
ture models. In addition, DPMMs can be formulated
within a fully Bayesian framework allowing for direct
estimation of the posterior probability of the number
of mixture components.

Our main contribution in this paper is the exten-
sion of finite mixtures of Chow-Liu trees to Dirich-
let process mixtures of trees (DPMT) in a Bayesian
framework. The framework of the new model can be
used to decide how many mixture components to use if
one wants to build a tree-based finite mixture model,
to sample from the posterior over the parameters, or
to perform model averaging over both the parameters
and different numbers of mixture components (poten-
tially reaping benefits from removing both sources of
uncertainty). We demonstrate the effectiveness of the
model both on simulated data and on historical data of
daily rainfall occurrence for networks of rain stations.

The paper is structured as follows: we recap Chow-
Liu trees and a finite mixture of Chow-Liu trees (Sec-
tion 2), then describe a fully Bayesian framework for
Chow-Liu trees and finite mixtures of trees (Section 3)
briefly discussing DPMMs and introduce infinite mix-
tures of trees (Section 3.3). We then analyze the use of
the model on both synthetic and real-application data
(Section 4). Finally, we summarize our contributions
and mention several possible directions. (Section 5).

2. Trees and Mixtures of Trees

In this section, we describe the basic framework for
learning with finite mixtures of trees. This framework
will be extended further in the following sections.

Assume we are given a set of d-dimensional
complete discrete-valued vector observations D ={
x1, . . . ,xN

}
. We assume that vectors xn (n =

1, . . . , N) were sampled i.i.d. from some unknown joint
distribution over d random variables. We will denote
the set of these d variables by V (|V| = d) and refer
to individual variables as Xv for v ∈ V. Let Xv be
the range of Xv, and let rv = |Xv| be the number of
values that Xv takes on. Let X = (Xv)v∈V with range
X =

⊗
v∈V Xv be the vector of all d variables Xv de-

fined over |X | =
∏

v∈V rv possible values of the Carte-
sian product of ranges of Xv. To simplify notation, an
assignment of a random variable will be denoted by a
lower case letter, e.g., X = x will be denoted simply
by x.

In the maximum likelihood (ML) framework, we
want to find a distribution T (X) maximizing the
log-likelihood of the data or alternatively mini-
mize Kullback-Leibler divergence (relative entropy)
KL (P ‖ T ) where P (X) is an empirical distribution
as observed from D, i.e., P (x) = 1

N

∑N
n=1 δxn (x)

with δx′ (x) = 1 iff x = x′.

First, we concentrate on finding T from a fam-
ily of distributions where the dependence structure
G = (V, E) can be represented as a tree. T has two
related sets of parameters: the set of edges E making
up a tree, and the set of parameters θE = {θuv}{u,v}∈E
defining multinomial distributions for pairs of variables
corresponding to the edges in the tree. Let θuv (i, j) =
T (Xu = i,Xv = j) and θv (i) = T (Xv = i)2. Note
that for any v ∈ V such that {u, v} ∈ E and any i ∈ Xu,∑

j∈Xv
θuv (i, j) = θu (i). Defining θT = {E ,θE}, T

can be formulated as

T (x|θT ) =

(∏
v∈V

θv (xv)

) ∏
{u,v}∈E

θuv (xu, xv)
θu (xu) θv (xv)

 .

(1)
Chow and Liu (1968) showed that the relative entropy
is maximized when E is constructed by solving a maxi-
mum spanning tree problem (Cormen et al., 1990) on a
graph with nodes V and pairwise weights equal to cor-
responding mutual information values MIP (Xu, Xv):

MIP (Xu, Xv) =
∑
Xu

∑
Xv

P (xu, xv) log
P (xu, xv)

P (xu) P (xv)
.

The solution for θE is just the set of corresponding
bivariate marginals of P :

∀ {u, v} ∈ E θuv (i, j) = P (Xu = i, Xv = j) ;
∀v ∈ V θv (i) = P (Xv = i) .

2This notation is adopted from Meilă and Jaakkola
(2006).
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The Chow-Liu algorithm has O
(
Nd2r2

max

)
time

complexity where rmax = maxv∈V{rv} is the
largest number of possible values over all vari-
ables. The distribution T is parametrized using only∑

v∈V rv − d +
∑

u,v∈ET
(ru − 1) (rv − 1) free param-

eters3 (O
(
dr2

max

)
) compared to

∏
v∈V rv − 1 free pa-

rameters (O
(
rd
max

)
) needed to specify a full probabil-

ity distribution on X .

2.1. Finite Mixture of Trees

Not all joint distributions can be approximated well
by Chow-Liu trees. The expressive power of the model
in the previous section can be improved by using a con-
vex combination (a mixture) of tree-structured com-
ponents (Meilă & Jordan, 2000). The K-component
mixture of trees Q (X) is defined as

Q (x) =
K∑

i=1

πiT
i (x)

where each T i is of the form of Equation (1), πi ≥ 0,
and

∑K
i=1 πi = 1. While one can require that all

K components share the dependence tree structure
(Meilă & Jordan, 2000), we do not enforce this restric-
tion on structures in this paper. The set of parameters
ΘM for Q consists of a vector of mixture component
probabilities π (parameters for a multinomial distri-
bution), and K sets of parameters θi

T =
{
E i,θi

}
for

tree components. The measure G over the parameters
used to generate D can be written as

G =
K∑

i=1

πiδθi

T

where δ is Dirac delta function. The generative model
for D can then be described as:

n = 1, . . . , N : θn ∼ G

n = 1, . . . , N : xn ∼ T (·|θn) .

While the maximum likelihood estimation of ΘM

cannot be performed in closed form, they can be
estimated using the Expectation-Maximization (EM)
(Dempster et al., 1977) algorithm that treats the mix-
ture components for all examples in the training set
as hidden variables. (See Meilă and Jordan (2000) for
details.)

3Not including parameters needed to indicate the se-
lected edges.

3. Bayesian Framework for Mixtures of
Chow-Liu Trees

Instead of computing point estimates of parameters
(e.g., via ML or maximum aposteriori (MAP)), it may
be desirable to use a posterior distribution over the
parameters given the data or to integrate over (or to
average) the parameters in order to compute condi-
tional probability distributions for new data points.
This approach is especially useful when the posterior
has multiple modes or if the posterior probability sur-
face is flat near its modes. While the posterior dis-
tribution can rarely be described analytically, one can
often efficiently obtain samples from it, and use these
samples to approximate the true posterior.

We can place the mixture of trees from Section 2.1
into a Bayesian framework by introducing priors over
the set of parameters π and over sets of parameters θi

T .
Let p (π|α) = D

(
α
K , . . . , α

K

)
be a symmetric Dirich-

let prior for the parameters of the mixing component
multinomial distribution (the Dirichlet is a conjugate
prior for multinomial distributions), and let p

(
θi

T |Θθ

)
be the prior for the parameters for the Chow-Liu tree
components (assuming all components have the same
prior distribution). The generative model for D is then
(as shown in Figure 1)

i = 1, . . . ,K : θi
T ∼ G0 = p (·|Θθ)

π ∼ D
( α

K
, . . . ,

α

K

)
G =

K∑
i=1

πiδθi

T

n = 1, . . . , N : θn ∼ G

n = 1, . . . , N : xn ∼ T (·|θn) .

Then the posterior distribution over the parameters of
the mixture of trees can be written as

p (ΘM |D, α,Θθ) =
p (ΘM ,D|α,Θθ)

p (D|α,Θθ)

=

p (π|α)
K∏

i=1

p
(
θi

T |Θθ

)( N∏
n=1

K∑
i=1

πiT
i (xn)

)
∫

p (π|α)
K∏

i=1

P
(
θi

T |Θθ

)( N∏
n=1

K∑
i=1

πiT
i (xn)

)
dΘM

.

While the numerator can be computed tractably by di-
rect evaluation, the integral in the denominator cannot
be evaluated analytically and numerical integration is
challenging due to high dimensionality of the variable
of integration. Similarly, we are also unable to com-
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pute analytically the probability of unseen data

P (x|D, α,Θθ) =
∫

p (ΘM |D, α,Θθ) P (x|ΘM ) dΘM .

Instead we can use Markov-Chain Monte Carlo
(MCMC) techniques to sample from the posterior of
the unseen variables and parameters. We will do
so using a Gibbs sampler by fixing some of the pa-
rameters and variables and sampling from the poste-
rior of the rest of the unobserved parameters. Let
s =

(
s1, . . . , sN

)
be the set of indicators where sn

refers to the mixture component that generated xn,
and let s−n refer to the indicators of all mixture com-
ponents except for sn. For the Bayesian finite mixture
of trees, the sampling can be performed in the follow-
ing sequence:

n = 1, . . . , N : sn|π,θ1
T , . . . ,θK

T ∼ πiT
i (xn)∑K

i=1 πiT i (xn)

i = 1, . . . ,K : θi
T |s ∼ p (·|s,Θθ,D)

π|s ∼ D
( α

K
+ #s1, . . . ,

α

K
+ #sK

)
where

p
(
θi

T |s,Θθ,D
)
∝ p

(
θi

T |Θθ

) ∏
n:sn=i

T i (xn) (2)

and #si is the number of entries of s equal to i.

Finite mixture models can be extended to allow
countably many mixture components by replacing a
multinomial distribution (with a conjugate Dirichlet
prior) with a Dirichlet process, a distribution over dis-
tributions (Ferguson, 1973; Antoniak, 1974). The re-
sulting Dirichlet process mixture model (DPMM) can
be viewed as a convex combination of distributions
sampled from some base measure G0 (in our case,
p (·|Θθ)) and mixing coefficients from D

(
α
K , . . . , α

K

)
as K → ∞. This view is possible because distribu-
tion G =

∑∞
i=1 πiδφi

with φi ∼ G0 is well-defined.
One possible generative model for D under a DPMM
is due to Blackwell and MacQueen (1973):

n = 1, . . . , N : θn
T |θ

1
T , . . . ,θn−1

T ∼

∑n−1
j=1 δθj

T

+ αG0

n− 1 + α
n = 1, . . . , N : xn ∼ T (·|θn) .

We still need to define a prior distribution for θi
T

so that Equation (2) has a form that we can sample
from. Recently, Meilă and Jaakkola (2006) proposed a
conjugate prior for tree-structured distributions. This
prior is described in the next subsection; we will use it
to obtain a closed form posterior distribution for (2).

3.1. Conjugate Prior for Tree-Structured
Distributions

The prior consists of two components, P (E|β) and
p (θE |E ,Ψ). The first probability distribution is over
all possible spanning tree structures. The second dis-
tribution is over parameters of the bivariate distribu-
tions on the edges given the structure of the tree. β is
a symmetric matrix of non-negative weights for each
pair of distinct variables and zeros on the diagonal
(βuv = βvu ≥ 0 ∀u, v ∈ V, u 6= v and βvv = 0 ∀v ∈ V).
The probability over all spanning tree structures is de-
fined as

P (E|β) =
1
Z

∏
{u,v}∈E

βuv (3)

where the normalization constant is

Z =
∑
E

∏
{u,v}∈E

βuv. (4)

Remarkably, Z can be computed in closed form (in
O
(
d3
)

time) even though there are dd−2 trees to sum
over.

For the conditional distribution of the parameters θ
given the edges E , Meilă and Jaakkola (2006) propose
using a product of Dirichlet priors, one for each edge:

p (θ|Ψ) =
∏
v∈V

p (θv|Ψ)
∏

{u,v}∈E

P (θuv|Ψ)
P (θu|Ψ) p (θv|Ψ)

=
∏
v∈V

D
(
N ′

v

) ∏
{u,v}∈E

D
(
N ′

uv

)
D
(
N ′

u

)
D
(
N ′

v

)(5)

where N ′
uv = {N ′

uv (i, j) > 0 : i ∈ Xu, j ∈ Xv} and
N ′

v = {N ′
v (i) > 0 : v ∈ Xv}, and ∀v ∈ V ∀j ∈ Xv ∀u 6=

v ∈ V ∑
i∈Xu

N ′
v (j) =

∑
i∈Xu

N ′
uv (u, v) .

N ′
uv and N ′

v can be thought of as data pseudo-counts
for pairs and singletons of variables. Together with
edge weights β they serve as sufficient statistics for
the prior distribution. It is worth noting that this prior
preserves the probability mass assigned to a set of pa-
rameters under reparametrizations due to changes in
edge orientation if the undirected graphical model is
converted into an equivalent directed graphical model.
This likelihood equivalence property becomes very use-
ful for sampling from this prior.4

4Meilă and Jaakkola (2006) showed that, subject to cer-
tain assumptions, this factored Dirichlet prior is the only
prior that preserves likelihood equivalence.
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Given a complete data set D, a posterior distribu-
tion p (E ,θ|D,β,Ψ) has the same functional form as
its prior. The update of the parameters can be com-
puted in O

(
Nd2r2

max

)
time. Conjugacy also allows

analytical computation of the probability of a new vec-
tor x given a data set D. However, this computation
requires computation of the determinant of a d×d ma-
trix, and requires therefore O

(
d3
)

update time. De-
tails can be found in Meilă and Jaakkola (2006).

3.2. Sampling for Chow-Liu Trees

The description of the prior distribution for Chow-
Liu trees in Section 3.1 suggests sampling first the
edges E of the spanning tree and then the parameters
θ given the structure E . Even though there are dd−2

spanning tree structures, there are algorithms to gen-
erate samples from the distribution (3) in polynomial
time. Among the deterministic algorithms, Colbourn
et al. (1996) proposed an algorithm with running time
proportional to the time it takes to multiple two ma-
trices of size d × d (a less cumbersome deterministic
algorithm runs in O

(
d3
)
). Broder (1989) suggested a

randomized algorithm for sampling from Equation (3)
which takes time O (d ln d) based on a random walk on
the graph V with weights β, which is dominated by the
O
(
d2
)

time needed to compute the transition proba-
bilities for this walk. We implemented Broder’s algo-
rithm that switches to a slower Metropolis-Hastings
sampler (based on Broder’s algorithm with modified
edge weights) if the original sampler does not stop in
reasonable time. To sample parameters θ given E , one
can first convert an undirected tree with edges E into
a directed tree E by choosing an arbitrary node in V as
the root, and then incrementally changing undirected
edges into directed edges such that there is a directed
path from the root to each other node in the graph.
One can then sample the parameters of the directed
trees and transform them into their counterpart for the
undirected tree. Because of the likelihood equivalence
property, the resulting sample has the same distribu-
tion as if it were sampled directly from Equation (5).

3.3. Dirichlet Process Mixture of Trees

We finally have all of the pieces in place to define
Dirichlet process mixture of trees (DPMT). A directed
graphical model representation for the priors and pa-
rameters is shown in Figure 1. While computation of
the posterior over s and θT is impossible analytically,
one can sample from this posterior using MCMC since
only a finite number of mixture components can be re-
sponsible for generating D (e.g., Neal (2000)). Having
a conjugate prior p (·|β,Ψ) allows us to use a collapsed
Gibbs sampling scheme, as described in Figure 2 and

i

θi

s xn n

N
α

β

Ψ K

π

T

i

θi

s xn n

N

β

Ψ

a

b
α π

T

Figure 1. A graphical representation of a Bayesian finite
mixture of trees (top) and a Dirichlet process mixture of
trees (bottom).

based on Algorithm 2 from Neal (2000); however, it
also contains a step to resample the concentration pa-
rameter α. West (1992) showed that a conjugate prior
for α is a mixture of gamma distributions; here we use
a single gamma distribution G (a, b) with a, b > 0. For
complete data, PT (xn|Θθ) needs only be computed
once (O

(
Nd3

)
total). The running time for one itera-

tion of this sampling scheme is O (NKd) for all evalu-
ations of T i (xn) (N evaluations of K current compo-
nents, O (d) per evaluation) and takes time O

(
d2
)

on
average for every newly added component.

4. Experiments

The experiments were performed with two tasks in
mind. The first is estimation of the number of com-
ponents for a finite mixture of trees (i.e., model se-
lection). The second task is prediction via Bayesian
model averaging using samples from the estimated
posterior distribution over the parameters. Neither
task can be solved analytically and, thus, we use
approximations based on sampling. For the experi-
ments, we used flat priors for trees, i.e., βuv = 1 and
N ′

uv (i, j) = 1 for u 6= v.

4.1. Simulated Data

First, we use the DPMT model to learn a distribu-
tion from simulated data generated from a finite mix-
ture of trees. We randomly generated 10 sets of model
parameters of a 6-state MT model over d = 30 binary
variables. From each of these models, we simulated
30-dimensional data vectors with training sets of size
N = 100, 200, 500, 1000, 2000 and 5000. For each set
of model parameters, we also generated a test set with
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Algorithm SampleDPMT(s,ΘT , α,D)
Inputs: Data set D and current MCMC values of
s =

(
s1, . . . , sn

)
, ΘT =

{
θsn

T : n = 1, . . . , N
}

, α

• n = 1, . . . , N : Update sn

– S = {sm : m = 1, . . . , n− 1, n + 1, . . . , N}

– wnew = α
N−1+α ; i ∈ S : wi = #s−n

i

N−1+α

– Z =
∑

i∈S wiTi (xn) + wnewPT (xn|Θθ)

– sn ∼
{

wi

Z T i (xn) : i ∈ S
wnew

Z PT (xn|Θθ) : i = new

– If sn = new draw a new value for sn and
parameters θsn

T ∼ G0

• j ∈
{
s1, . . . , sN

}
: Update θj

T

– θj
T ∼ p (·|s, {xn : sn = j} ,Θθ)

• Update α (West, 1992)

Output: New values MCMC values: s, ΘT , α

Figure 2. Collapsed Gibbs sampling for the infinite mixture
of trees model.

N = 10000. We then learned back the parameters
for the 6-state MT with EM (MAP) with 100 random
restarts. For each training set, we also computed 500
samples from the posterior p (s,θ1, . . . ,θN |D) of the
DPMT. Samples were collected every 20 iterations of
the MCMC sampler after 1000 iterations for burn-in.

Figure 3 compares the log-likelihood of the test set
under the DPMT (with a prior of G (0.1, 1) for α),
the learned 6-state MT, and the true model. The log-
likelihood for each Bayesian model was obtained by
averaging over test set log-likelihoods with parame-
ters sampled from the posterior distribution. The re-
sults in Figure 3 show that the DPMT significantly
outperforms a point estimate model. Furthermore, it
performs virtually identically to a Bayesian finite mix-
ture that knows the true number of components (and
this true number is not known to the DPMT). The
DPMT achieves its predictive gain over the MAP es-
timate model by averaging over sets of parameters.

4.2. Modeling Rainfall Occurrence Patterns

We use our approach to study predominant patterns
of rainfall occurrence. Precipitation modeling is an im-
portant problem in hydrology, and accurate generative
models for rainfall serve as useful tools in water man-
agement and crop modeling. Of particular interest is
the problem of modeling simultaneous daily rainfall for

a group of locations, usually in the same geographic
region.

We consider two data sets: data from the Ceará
region of Brazil (consisting of 24 90-day seasons for
d = 10 stations, N = 2160), and data from the
Queensland region in northeastern Australia (40 197-
day seasons for d = 11 stations, N = 7880). For
each set, we fit a DPMT with different priors for α
((a, b) = (1, 1) , (0.5, 1) , (0.2, 1) , (0.1, 1) , (100, 100) ,
(50, 100) , (20, 100) , (10, 100)). We then collected 1000
samples from the posterior p (s,θ1, . . . ,θN |D) (one ev-
ery 20 iterations of the MCMC sampler after 1000 it-
erations of burn-in).

From the histograms of the number of active mix-
ture components obtained from 1000 samples for the
Brazil data (Figure 4), it appears that depending on
the parameters of the prior for α, there could be be-
tween 3 and 12 components active. However, a closer
look at the traces of s paints a different picture. The
top three components (in terms of the proportion of
examples assigned to them) explain either all of the
data or most of it (Figure 5 is representative of runs for
all values of (a, b)).There are only 3 significant compo-
nents, and the presence of the rest of the components
may be compensating for the fact that the data was
likely not generated by a finite mixture distribution.
These results are consistent with evaluation of K by
a cross-validation (Figure 7, top). The cross-validated
log-likelihood plot also suggests that the DPMT has a
better predictive accuracy than a K-state MT, again
possibly because the data was not generated by a finite
mixture model.

A similar story can be told about the other data
sets. The DPMT posterior distribution over the num-
ber of mixture components is consistent with cross-
validated log-likelihood selection for Queensland (Fig-
ures 6 (top,center) and 7, bottom). However, unlike
the Brazil data, the traces for this set do not indicate
a clear number of mixture components (also consistent
with the cross-validated log-likelihood plots in Figure
7, bottom). However, some of the components are
intermittent as the number of vectors with the same
value of index s often drops to 0 (i.e., the correspond-
ing component vanishes during MCMC). Note that
by dropping these intermittent components from the
counts, we get a much clearer picture of the likely num-
ber of true components in the data (e.g., see Figure 6,
bottom). Also, as with the Brazil data set, the DPMT
has better predictive accuracy than a finite state MT
(Figure 7).
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5. Conclusion

Finite mixtures of tree-structured distributions are
a broadly useful class of graphical models due to their
tractability. In this paper we proposed and developed
the extension of such models to the infinite mixture
case. We described a general non-parametric Bayesian
framework for this problem. On simulated data the
model was able to outperform the finite mixture model
in terms of prediction on unseen data, even when the fi-
nite mixture model was using the true number of com-
ponents. We also illustrated the ability of the model to
extract useful information from large-scale real-world
rainfall data sets. In conclusion, the non-parametric
Bayesian approach to mixtures of trees allows it to
achieve systematically better prediction performance
compared to finite mixtures, by averaging over uncer-
tainty in the tree mixture parameters and the number
of components.

For the rainfall data in particular it would be useful
to extend the DPMT approach to time series data, for
example via hierarchical DPs (Teh et al., 2006). While
in this paper we assumed complete data vectors, the
Bayesian framework presented here could be extended
to handle missing data.
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Meilă, M., & Jaakkola, T. (2006). Tractable Bayesian
learning of tree belief networks. Statistics and Com-
puting, 16, 77–92.
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Figure 3. Test set averaged log-likelihood of the MAP esti-
mate of the distribution with the correct parametric form
(6-state mixture of trees, red pluses, dotted), Bayesian fi-
nite mixture for the correct parametric form (estimated,
green stars, dash-dotted), DPMT (estimated, blue circles,
dashed), and true distribution (black Xs, solid).
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Figure 4. Histogram plots of the fraction of samples that
contain k components, over 1000 MCMC samples for the
Brazil data. (Top: all clusters under wide priors for α;
bottom: all clusters under a concentrated prior for α)
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Figure 5. The proportion of data vectors in the Brazil data
set that are assigned to each of the top 3 components in
the model, and the combined proportion. (α with prior
G (0.1, 1)).
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Figure 6. Histogram plots of the fraction of samples that
contain k components, over 1000 MCMC samples for the
Queensland data. (Top: all clusters under wide priors for
α; center: all clusters under a concentrated prior for α;
bottom: significant clusters under wide priors for α)
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Figure 7. Out-of-sample (cross-validated, leave-one-season
out) log-likelihood of K-state mixture of trees (blue stars)
vs DPMT cross-validated estimate (thick black line) for
Brazil (top) and Queensland (bottom) data.


